International Journal of Advanced Engineering Research and Science (1JAERS)

Vol-3, | ssue-6, June- 2016
I SSN: 2349-6495

Handling of Priority Inversion Problem in RT-
Linux using Priority Ceiling Protocol

Silambarasan b Ramanatha Venkatesarf M

Assitant Professor, Department of EEE, AURC- CBEversity, Coimbatore, Tamil Nadu
“Department of EEE, AURC- CBE University, CoimbatoFamil Nadu

Abstract— Real time system which runs multiple task
concurrently or pseudo concurrently shares the veses
will face priority inversion phenomenon. This pitgr
inversion phenomenon will reduce the Real Timeefyst
predictability which in turn leads to un-predictabérror.
Continuous Priority Inversion phenomenon will letod
Real Time System to collapse. This paper analyses t
cause and effect of the priority inversion phenocomen
Further analyze the various solution and implemgata

in RT-Linux. This paper improves the already emgsti
priority inheritance protocol and priority ceiling
protocol. The proposed algorithm will prevent theaR
Time System from deadlock related to priority isicn
prevention protocol. Experimental results and as#yin
theoretical way indicate that the methods to sdive
priority inversion problem in RT-Linux are effeeiand
concise, provides reasonable technical detailgtiersafe
running of complex real-time application in RT-Linu
Keywords— Priority Inversion, Priority Reversal,
Priority Ceiling, Real Time Systems, RT-Linux.

. INTRODUCTION
Real Time System is a system where a timely respbys
the computer to external stimuli is vital [1]. The
correctness of the response not only depends doalog
value of the result but also the time at which oase is
given. The operating System used in such systenmlého
adhere with above definition and should strive ¢hiave
this. Real Time Operating System has one of the
important components in Real Time Systems to meat R
Time system’s demands. Nowadays, various commercia
Real Time Operating System are available off thelfsh
But to reduce the cost of the Real Time Operating
System, achieve the reliability of the Real Timee@tting
System and have high configurability of Real Time
Operating System, Linux has been considered foingav
it in Real Time Systems. Embedded Linux has enterge
as one such Operating System. Embedded Linux is an
Open Source which paves the way to customize ared fi
tune the Operating System based on the embedded
system. Embedded Linux supports wide range of
hardware which eases the effort of porting it imgw

www.ijaers.com

embedded products. So, Embedded Linux could get in
Embedded Products easily. Embedded Linux has
powerful community available in internet which relp
have good technical support. Embedded Linux has
various real time capabilities which make it suigafor

the Embedded Systems. Moreover, the Embedded Linux
is available in free of cost in most scenarios.ukirhas
proven its existence in huge servers and in snaaltiheld
devices. Above advantages are applicable for RilbLi
Linux could be made as hard real time Operatinge®ys

in two ways. One is only to modify the Linux Kerntie
other is to add an abstract hardware layer, that $ay, to
add a real-time kernel to have the real-time penforce.
First approach modifies the Linux and adopting POSI
1.b standard. In order to reduce the time that imasks

the interrupts, pre-emption points are inserted.imux
Kernel Code. This method improves the real-time
performance of the Linux kernel. But, this methaald

not meet the hard real-time performance. The second
method solute the problem and reaches the hardineal
performance [3].

RT-Linux comes under the category of the Embedded
Linux. RT-Linux has relatively good real-time
performance compared to its counterparts like RTAI,
etc.,. RT-Linux is a hard real-time RTOS microkéhat
runs the entire Linux operating system as a fullg-p
emptive process. The hard real-time property makes
possible to control robots, data acquisition system
manufacturing plants, and other time-sensitive
instruments and machines from RT-Linux applications
The key RT-Linux design objective was to add haxal-r
time capabilities to a commodity operating system t
facilitate the development of complex control pags
with both capabilities. For example, one might wmt
develop a real-time motor controller that used a
commodity database and exported a web operator
interface. Instead of attempting to build a singberating
system that could support real-time and non-readti
capabilities, RT-Linux was designed to share a agimg
device between a real-time and non-real-time opwyat
system so that (1) the real-time operating systenidc
never be blocked from execution by the non-reaktim
operating system and (2) components running intize

Page | 144

International Journal of Advanced Engineering Research and Science (1JAERS)

Vol-3, | ssue-6, June- 2016
I SSN: 2349-6495

different environments could easily share data.thes
name implies RT-Linux was originally designed tceus
Linux as the non-real-time system but it eventually
evolved so that the RT-Core real-time kernel cawid
with either Linux or BSD UNIX.
Thus RT-Linux has become an interesting Software
component which could be used for Real Time
Computing in a Real Time System. But Real time
Computing has many more challenges to meet likkerig
predictability, higher reliability, Should handleet widely
varying computational loads [1].
Some of the challenges could be better handled énf R
Time Operating System. They could be grouped inwel
headings Task assignment and scheduling,
Communication protocols, Failure Management and
recoveries [1]. In this paper one such issuetedldo
Communication Protocols in RT-Linux is discussed.
The key RT-Linux design objective was to add haal-r
time capabilities to a commodity operating system t
facilitate the development of complex control prags
with both capabilities. For example, one might wmt
develop a real-time motor controller that used a
commodity database and exported a web operator
interface. Instead of attempting to build a singberating
system that could support real-time and non-reaéti
capabilities, RT-Linux was designed to share a aging
device between a real-time and non-real-time opwyat
system so that (1) the real-time operating systenidc
never be blocked from execution by the non-reaktim
operating system and (2) components running intwiee
different environments could easily share data.thes
name implies RTLinux was originally designed to use
Linux as the non-real-time system but it eventually
evolved so that the RTCore real-time kernel could r
with either Linux or BSD UNIX.
Thus RT-Linux has become an interesting Software
component which could be used for Real Time
Computing in a Real Time System. But Real time
Computing has many more challenges to meet likberig
predictability, higher reliability, Should handleet widely
varying computational loads[1].
Some of the challenges could be better handled énf R
Time Operating System. They could be categorized as
Task assignment and scheduling, Communication
protocols, Failure Management and recoveries|it this
paper one such issue related to Communication €utsto
in RT-Linux is discussed.

Il. RT-LINUX ARCHITECTURE
RT-Linux provides the capability of running speaiahl-
time tasks and interrupt handlers on the same meadcis
standard Linux. These tasks and handlers are esccut
when they are needed to be executed no matter what
Linux is executing. The worst case time between the

www.ijaers.com

moment a hardware interrupt is know by the proaesso
and the moment an interrupt handler starts to dgeitsi
first instruction is under 15 microseconds on Rt
running on a generic x86. These times are hardware
limited, and as hardware improves RT-Linux will als
improve. Standard Linux has very good average
performance and can even provide millisecond level
scheduling precision for tasks using the POSIX sexd-
time capabilities. However, Standard Linux is not
designed to provide precision in the range of sub-
millisecond and reliable timing guarantees. RT-kimas
based on a lightweight virtual machine where theuki
runs as guest Operating System and it was given a
virtualized interrupt controller and virtualizedngér, and

all other hardware access was direct. For the thaal-
"host", the Linux kernel is a thread. Interrupteded for
deterministic processing are taken care by thetneal
core, while other interrupts are sent to Linux ledrn
which runs at a lower priority when compared td-temae
threads. Linux kernel device drivers handle almalst
operations related to I/O. First-In-First-Out pig€$s-0s)

or shared memory can be used to share data betiveen
General purpose Linux operating system and read-tim
core RT-Linux.

RT-Linux built a virtual software layer. When Linux
disables or enables interrupts, one variable ofviteal
software layer is set. When one interrupt happ&is,
Linux decides if the interrupt should be handled yux

or RT-Linux according to the value of the variable.
respect of memory allocation of the real-time taRR-
Linux allocates the memory for all real-time tasks
Linux kernel modules, so that all real-time tasles/én
same address space as the Linux kernel. It caanahe
difficulty of RT-Linux development to do like thiBut
Real Time task programmer has to design carefelly-r
time programs in case of any crash in Real Timk tias
whole system would be affected. In respect of task
scheduling, the scheduler of RT-Linux bases on the
priority scheduling. But the priority scheduling ot
suitable for all real-time application, So RT-Lindras
modularized the scheduler, therefore the user santhe
schedulers based on various policies and algorithms
respect of real-time clock, in order to realize grecise
real-time trimming and avoid the task releaserjitieT-
Linux adopts internal hardware timer chips as timer
interrupt generator. In respect of inter process
communication, RT-Linux provides the mechanism of
semaphore message queue and especially for the oéed
communication between real-time processes and none
real-time processes. RT-Linux provides FIFO, arateth
memory for inter task communication.

Page | 145

International Journal of Advanced Engineering Research and Science (1JAERS)

Vol-3, | ssue-6, June- 2016
I SSN: 2349-6495

Real-time T Non real-time
process P process
Real-time Non real-time Linux kernel
task task (preemptable)

Hardware

Fig.1: Architecture of RT-Linux

RT Linux kernel is module based kernel, the schedigl
itself a loadable kernel module. So, various scliegu
policies like Earliest Deadline First(EDF), Ratehin

(RM) could be used. In RT-Linux the Linux runs asvl
priority process. Advantages of RT-Linux are sniatt

size (approx. 150 KB), higher degree of predictghil
response in terms milli-second and sophisticatedice
from GPOS Linux.

M. PRIORITY INVERSION PHENOMENON
Priority inversion is phenomenon that occurs when a
higher priority task waits for a lower priority tago
release a resource it needs but that is held byerlow
priority task and meanwhile the intermediate ptiori
tasks pre-empt the lower priority task from CPU, Bigh
priority task would be blocked. Now the priority tfe
task effectively gets inversed with respect to redium
priority task. Priority Inversion will occur in Mti
tasking system when resource is shared acrosagks. t
Priority inversion would happen when high priortgsk
T(1) and low priority task(T3) share critical resoel and
T3 first gets the resource, while T1 is ready ask far
access the critical resource, it is blocked fortiwgi T3 to
release the resource, at this time, middle pridegk T2
which does not need the resource is ready, T2 sélee
processor to made T1 continue block until T2 ezl
then T3 gets the processor again to complete theofis
shared resource, finally T1 pre-empts T3 and rumnin

In above scenario , the priority of T1 comes dowievel

of T3’s priority, So the high priority task T1 castrmeet

its deadline first, if many middle priority has emed,
high priority task would be blocked for undeterndne
duration which is called as Continuous Prioritydrsion
Phenomenon. Serious continuous priority inversion
phenomenon will end up with collapse of the whaal+
time system. One of the most famous victims of fyio
Inversion problem is the “mars path finder”. Althgbu
priority inversion phenomenon was found early irvQ9
of the last century, there is no effective and $mp
solution yet. In some other scenario, there would b
another task (T4) which would tries to acquire the
common resource which may lead to cyclic change of

www.ijaers.com

priority which leads to un-bounded priority invensi
problem.

Task- Running

Low Blocked

Priority Ready

Task- Running

Medium Blocked I I

Priority Ready Medium priority Task running
Task- Running High priority task blacked
High Blocked

Priority Ready

Fig.2: Priority Inversion Phenomenon.

Priority inversion phenomenon is an important reasb
unpredictable errors in real-time system. Serious
continuous priority inversion phenomenon will lesml
real-time system to collapse. The priority inversis a
most common problem that will affect the real-time
performance of a real — time kernel. Priority irsien
affects heavily on the system predictability. Se tkal-
time system may enter into unpredictable mode.

V. EXISTING SOLUTION
There are many methods to solve the priority ineers
problem and each method has its own advantageglas w
as disadvantage. A Solution will suite only for the
specific application environment.
4.1. Locking the Scheduler
Locking the scheduler will suspend the scheduler.
Whenever a task enters into any of the criticatisecthe
scheduler will be locked. Once the task comes bat t
critical region the scheduler would be releasedis Th
method stops temporarily the scheduler till the tigsin
the critical section.
If task (T1) wants to access critical section, It vock
the scheduler, enters the critical section. Nownewéigh
priority task (T2) is ready in run queue, Task(Tbuld
not be pre-empted due to fact the scheduler iselbck
Once the task(T1l) has finished its update on atitic
section. It will release the scheduler. Now, theestuler
will schedule the high priority task (T2).

Task A()
{ a
Y
[Lock the schedulerl
¥
[Critical section }
|
Y

[Re lease the schedulel}

;
}

Fig.3: Solution to priority inversion — Locking sduler.

Page | 146

International Journal of Advanced Engineering Research and Science (1JAERS)

Vol-3, | ssue-6, June- 2016
I SSN: 2349-6495

This approach is simple and easy to implement by
programmer. System behaviour Analysis could be done
easily. Consider, there are three task in the systmely
task(TH) with highest priority, task(TM) with mediu
priority and task(TL) with lower priority. A resoce
(RA) is shared between task(TM) and task(TL). Takk

is ready and running enters the critical sectioawNhe
scheduler is locked and the high priority task(Tid)
entering into run queue. But, since the schedudemi
locked state, It could not have CPU. So, the tadk(is
blocked due to a resource that is nowhere relatddt

So, this approach will result in high degree un-
predictability in the system if the number of tasknore.
Higher priority task may often miss the deadlinfethie
critical section access time is high which in timarease
the time for which scheduler is in locked state, ®is
method is not suitable for system with more numbier
task or system with larger critical section.

4.2. Priority Remapping

This priority remapping method improves the priprit
inheritance protocol. The method is expanding the
priority from 64 to 128 without changing the extalrn
interface. For users, there are still only 64 pties. But

in internal task creation function, priority is rtiplied by

2 to achieve the priority remapping effect, so rina
priority is extended to (0, 2 ..., 126) even ptigrihe rest
odd priority are left for changing when priorityigrsion
phenomenon arises. For example, priority of taskt th
accesses critical resource is 80 while priorityask that
asks for the resource is 30, then priority of gmktwhich
accesses the critical resource will promote to 81 t
prevent priority inversion phenomenon

4.3. Priority Exchange

Priority exchange method is also deriving from the
improvement of priority inheritance protocol. Thasic
idea is that exchange tasks’ priorities when higbrity
task is blocked and priorities will be changed batter
critical region is finished. This method makes severy
task has unique priority in the system and soles t
priority inversion problem. The drawback is that
priority’s exchange requires additional costs.

4.4. Priority Inheritance

The idea of the priority inheritance protocol ishév a
high priority task is blocked by a low priority tagor
getting the resource, then the low priority task imhert
temporarily the priority of the higher priority tasWhen
the resource is released then low priority taskisrjty
will be assigned the same value as earlier.

If task (TH) is blocked by low priority task TI, Tlvill
inherit TH’s priority to avoid middle priority taskM
seizing the processor. After TL withdraw its cric
region, its priority resume to the original low qmity. If
there are many high priority task being blowe, low

www.ijaers.com

priority task would inherit the highest prioirty amg all
priority tasks. Prioirty inheritance mehod makes
developers do not need to know anything aboutdbk's
requirements of resurces which reduce the burdeheof
programmers. This improves the easier predictigtalnd
development of huge real-time embedded systemthzit
method can't prevent deadlock.

Task- Running
Low Blocked
Priority Ready
Task- Running

Medium Blocked

Priority Ready
J Resource Release d 6 Resource Acquired

Fig.4: Solution to priority inversion — Priority reritance

R4

Task- Running
High Blocked
Priority Ready

V. PROPOSEDSOLUTION
The Proposed solution is another algorithm thateis to
RT-Linux. But this algorithm has wide usage in some
commercial Real Time Operating Systems. Proposed
solution contains more than one algorithm whictculks
advantage and disadvantage in each use case level.
5.1.Highest Locker Protocol
The basic idea of priority ceiling protocol showsHigure
5. Programmer sets a ceiling priority for each sbfar
resource, Highest priority value of the task whiglyoing
to use this resource. The ceiling is the highesk ta
priority for requests the resource. High prioriask T1
and low priority task T3 need the same resource (th
black part in Figure 4). T3 gets ready first andess the
resource. At tl1 time point, T1 gets ready and tties
access the resource which has already held byd@33%
priority promotes to the ceiling at t2 time poiAfter T3
finishes the use of resource at t3 time point, TBierity
resume to the original low priority; T1 gets theaarce
and begin to run. After T1 ends, T2 begins to rumda
time point. After T2 ends, T3 continues to runStitne
point. This method extends priority inheritancetpool.
Priority ceiling protocol prevents deadlock and uess
the block time. The drawback is that developergiree
do static analysis in advance and assign a higiresity
for each shared resource. This make the prograotime
more complicated and developers must know all tasks
priorities and all idle resources’ priorities. Anghch
resource size a ceiling priority also decreasesthmber
of task created by application system. So pricciiling
protocol is not suitable for complex applications.

Page | 147

International Journal of Advanced Engineering Research and Science (1JAERS)

Vol-3, | ssue-6, June- 2016
I SSN: 2349-6495

3 | i
) 4 oo
Yl -
£
1 5 —

= R =
tl 2 13 2] 5

Fig.5: Solution to priority inversion — Highest Licer

Protocol.
5.2. Prioirity Ceiling Protocol
Priority Ceiling Protocol (PCP) extends the ide&$tP
and HLP to solve the problems of unbounded priority
inversion, chain blocking, and deadlocks, whiletls
same time minimizing inheritance-related inversions
Resource sharing among tasks under PCP is regulated
using two rules for handling resource requestsoues
grant and resource release. We elaborate theseute®
in the following:
Resource grant rule:
Resource grant rule consists of two clauses. Theee
clauses are applied when a task requests to lock a
resource.
5.2.1. Resource request clause:
(@) |If a task Ti is holding a resource whose ngili
priority equals CSC, then the task is granted acteshe
resource.
(b) Otherwise, Ti will not be granted CRS, unless i
priority is greater than CSC (i.e. pri(Ti) > CS@). both
(a) and (b) above, if Ti is granted access to dsource
CRS, and if CSC < C eil(C Ri), then CSC is set teilGC
2. Inheritance clause: When a task is prevented fro
locking a resource by failing to meet the resouycant
clause, it blocks and the task holding the resounigerits
the priority of the blocked task if the priority tfe task
holding the resource is less than that of the dddask.
5.2.2 Resource Release Rule:
If a task releases a critical resource it was mgidind if
the ceiling priority of this resource equals CSt&rnt CSC
is made equal to the maximum of the ceiling valtialb
other resources in use; else CSC remains unchaiiped.
task releasing the resource either gets back itgnat
priority or the highest priority of all tasks waigj for any
resources which it might still be holding, whicheus
higher.
PCP is very similar to HLP except that in PCP & tas
when granted a resource does not immediately aetugr
ceiling priority of the resource. In fact, under PGhe

www.ijaers.com

priority of a task does not change upon acquiring a
resource merely the value of a system variable CSC
changes. The priority of a task changes by theritamee
clause of PCP only when one or more tasks waitafor
resource it is holding. Tasks requesting a resobloek
almost under identical situations under PCP and .HLP
The only difference with PCP is that a task Ti e#so be
blocked from entering a critical section, if thepasts any
resource currently held by some other task whowseiyr
ceiling is greater or equal to that of T2. A littleought
would show that this arrangement prevents the
unnecessary inheritance blockings caused due to the
priority of a task acquiring a resource being raigevery
high values (ceiling priority) at the instant itgaires a
resource. In PCP, instead of actually raising ttierity

of the task acquiring a resource, merely the vatia
system variable (CSC) is raised to the ceiling ®@aBy
comparing the value of CSC against the prioritya déask
requesting a resource, the possibility of deadloisks
avoided. If no comparison with CSC would have been
made (as in PIP), a higher priority task may |dtek
some resource required by this task leading totanpial
deadlock situation where each task holds a parthef
resources required by the other task.

VI. IMPLEMENTATION DETAILS
By analyzing the RT-Linux source code, priority eéese
problem may not happen due to the priority inhed&a
protocol that is enabled in the RT linux kernelgbatBut
the Priority Inheritance Protocol is not much doigafor
the Real Time Application. As it only avoids the Un
Bounded Priority inversion problem. The problensesi
from the fact that Priority Inheritance Protocoklits own
limitation like chain blocking, deadlocks. Moreowdrain
blocking will result in un-predictable behavior ihe
system and many task may miss their respectivelidead
But Priority Inheritance is used due to its simipjicTo
solve this problem of priority reverse or priorityerse
problem alogn with chain blocking problem and deakKl|
problem, priority ceiling or variant of priority dieg
protocols have been adopted. The algorithm and
implementation details are discussed below.

e A global variable ‘System_Ceiling_Priority’ is
declared and initialized to zero.

« If a task Ti is holding a resource whose ceiling
priority equals to the value in
System_Ceiling_Priority, then the task is granted
access to the resource.

« (b) Otherwise, Ti will not be granted the resource,
unless its priority is greater than
System_Ceiling_Priority (i.e. pri(Ti) >
System_Ceiling_Priority). In both (a) and (b) above
if Ti is granted access to the resource , and if

Page | 148

International Journal of Advanced Engineering Research and Science (1JAERS)

Vol-3, | ssue-6, June- 2016
I SSN: 2349-6495

System_Ceiling_Priority < C eil(C Ri), then
System_Ceiling_Priority is set to Ceil(Resource)

« Inheritance clause: When a task is prevented from
locking a resource by failing to meet the resource
grant clause, it blocks and the task holding the
resource inherits the priority of the blocked tafsk
the priority of the task holding the resource issle
than that of the blocked task.

VII. EXPERIMENTAL RESULTSAND
DISCUSSION

Create task T1, T2, T3, T4, T5, T6 with prioritylwea
higher for lower task number. And T2, T5 shares the
resource R1 and R2. T1 to T2 is grouped as higtripyi
task. T3, T4 is grouped as medium priority task, T6
are grouped as low priority task.
Figure 6 shows the running result that didn't mgpdtie
kernel, T2 seizes the processor make T1 blocked lon
time and give raise to priority inversion phenomano

= C:ABCASABIN\pre 0000, exe

Fig.6: Priority Inversion Problem.
After use modified priority ceiling method, prityi
inversion phenomenon is confined to one level, tarde
is not chain blocking and deadlock possibility. The
experiment running result is shown in Figure 7.

= CrABCASABRIN\pr o s 0001, axe

Task is Ruaning

Fig7: Modified Priority Ceiling Protocol.

VIII. CONCLUSION
This paper discuss several methods to solve thaityri
inversion problem in RT-Linux such as disabling
interrupt, priority inheritance protocol, prioritgmapping
method, priority exchange and modified priority licej
protocol. The simplest method is that to lock the
scheduler preventing the system to context switcls
very simple and effective to limit priority inveosi
problem when critical region is very short. Buttife

www.ijaers.com

critical region is relatively long, higher priorityasks
would miss their deadline often. Priority exchange
method is relative complex in design, need to moRiT-
Linux kernel, but it is convenient to develop compl
real-time application for application programmerheT
drawback is that lack of deadlock prevention, chain
blocking and the exchange of priority will pay some
unnecessary overhead to Real Time System. In aHses
exchange priority frequently, the method will inase
burden of the system and effect the predictabibfy
system. Priority Inheritance protocol introduce
inheritance related inversion which is not suitafde
some Real Time System requirements due to laclead d
lock prevention, chain blocking, Inherited Inversio
problem. Modified Priority Ceiling Protocol takeset
advantages of priority ceiling protocol (Higher kec
protocol) and the priority Inheritance protocol. Byis
method, system is free from unbounded priority
inversion, Chain Lock, Dead Lock. And, this miniesz
the effect of Inheritance related inversion. Thecdssed
method improves effectively the removal of priority
inversion problem with relatively less overhead.eTh
Inheritance related inversion could be further el
But this algorithm only minimize the impact but not
removing the same. By having this algorithm, RTtxn
could be used in many time critical complex systems

REFERENCES

[1] lanlin Zhu, Keou Liu, Yu Tu, Yi Yuan, Xialoliang
Gao, “RT-Linux priority reversal and priority
inheritance mechanisms”, 2013 Fifth Conference on
Measuring Technology and Mechatrnics
Automation.

[2] XU Liang, XU Zhongwei. “Task scheduling
optimization in in pC/OSIl system”[J] computer
project. 2007,33(19):57-59

[3] C.M. Krishna, Kag G. Shin “Real-time Systems”
Tenth reprint 2013.

[4] Lee J H, Kim H N. “Implementing Priority
Inheritance Semaphore on uC/OS Real-time
Kernel[C]” Proc.of IEEE Workshop on Software
Technologies for Future Embedded Systems.2003-
05.

[5] WANG Jigang, GU Guochang, XIE Shibo, LI Yi.
“Priority inheritance Protocol and an improved
algorithm” Computer engineering,2007,33(8):41-44.

[6] ZHAO Qi, SUO Xiaoran. “Research of priority
inversion in real-time system”[J] Computer
Application Research .2008,25(6):1728-1730

[71 ZHOU Xuchuan. “A method to solve priority
inversion problem in puC/OS-Il system”[J]
Application of embedded operating system
2007,23(5-2) :58-64.

Page | 149

