
International Journal of Advanced Engineering Research and Science (IJAERS) Vol-3, Issue-6, June- 2016
ISSN: 2349-6495

www.ijaers.com Page | 144

Handling of Priority Inversion Problem in RT-
Linux using Priority Ceiling Protocol

Silambarasan D1, Ramanatha Venkatesan M2

1Assitant Professor, Department of EEE, AURC- CBE University, Coimbatore, Tamil Nadu
2Department of EEE, AURC- CBE University, Coimbatore, Tamil Nadu

Abstract— Real time system which runs multiple task
concurrently or pseudo concurrently shares the resources
will face priority inversion phenomenon. This priority
inversion phenomenon will reduce the Real Time System
predictability which in turn leads to un-predictable error.
Continuous Priority Inversion phenomenon will lead the
Real Time System to collapse. This paper analyses the
cause and effect of the priority inversion phenomenon.
Further analyze the various solution and implementation
in RT-Linux. This paper improves the already existing
priority inheritance protocol and priority ceiling
protocol. The proposed algorithm will prevent the Real
Time System from deadlock related to priority inversion
prevention protocol. Experimental results and analysis in
theoretical way indicate that the methods to solve the
priority inversion problem in RT-Linux are effective and
concise, provides reasonable technical details for the safe
running of complex real-time application in RT-Linux.
Keywords— Priority Inversion, Priority Reversal,
Priority Ceiling, Real Time Systems, RT-Linux.

I. INTRODUCTION
Real Time System is a system where a timely response by
the computer to external stimuli is vital [1]. The
correctness of the response not only depends on logical
value of the result but also the time at which response is
given. The operating System used in such system should
adhere with above definition and should strive to achieve
this. Real Time Operating System has one of the
important components in Real Time Systems to meet Real
Time system’s demands. Nowadays, various commercial
Real Time Operating System are available off the shelf.
But to reduce the cost of the Real Time Operating
System, achieve the reliability of the Real Time Operating
System and have high configurability of Real Time
Operating System, Linux has been considered for having
it in Real Time Systems. Embedded Linux has emerged
as one such Operating System. Embedded Linux is an
Open Source which paves the way to customize and fine
tune the Operating System based on the embedded
system. Embedded Linux supports wide range of
hardware which eases the effort of porting it into new

embedded products. So, Embedded Linux could get in
Embedded Products easily. Embedded Linux has
powerful community available in internet which helps to
have good technical support. Embedded Linux has
various real time capabilities which make it suitable for
the Embedded Systems. Moreover, the Embedded Linux
is available in free of cost in most scenarios. Linux has
proven its existence in huge servers and in small handheld
devices. Above advantages are applicable for RT-Linux.
Linux could be made as hard real time Operating System
in two ways. One is only to modify the Linux Kernel, the
other is to add an abstract hardware layer, that is to say, to
add a real-time kernel to have the real-time performance.
First approach modifies the Linux and adopting POSIX
1.b standard. In order to reduce the time that Linux masks
the interrupts, pre-emption points are inserted in Linux
Kernel Code. This method improves the real-time
performance of the Linux kernel. But, this method could
not meet the hard real-time performance. The second
method solute the problem and reaches the hard real-time
performance [3].
RT-Linux comes under the category of the Embedded
Linux. RT-Linux has relatively good real-time
performance compared to its counterparts like RTAI,
etc.,. RT-Linux is a hard real-time RTOS microkernel that
runs the entire Linux operating system as a fully pre-
emptive process. The hard real-time property makes it
possible to control robots, data acquisition systems,
manufacturing plants, and other time-sensitive
instruments and machines from RT-Linux applications.
The key RT-Linux design objective was to add hard real-
time capabilities to a commodity operating system to
facilitate the development of complex control programs
with both capabilities. For example, one might want to
develop a real-time motor controller that used a
commodity database and exported a web operator
interface. Instead of attempting to build a single operating
system that could support real-time and non-real-time
capabilities, RT-Linux was designed to share a computing
device between a real-time and non-real-time operating
system so that (1) the real-time operating system could
never be blocked from execution by the non-real-time
operating system and (2) components running in the two

International Journal of Advanced Engineering Research and Science (IJAERS) Vol-3, Issue-6, June- 2016
ISSN: 2349-6495

www.ijaers.com Page | 145

different environments could easily share data. As the
name implies RT-Linux was originally designed to use
Linux as the non-real-time system but it eventually
evolved so that the RT-Core real-time kernel could run
with either Linux or BSD UNIX.
Thus RT-Linux has become an interesting Software
component which could be used for Real Time
Computing in a Real Time System. But Real time
Computing has many more challenges to meet like higher
predictability, higher reliability, Should handle the widely
varying computational loads [1].
Some of the challenges could be better handled by Real
Time Operating System. They could be grouped in below
headings Task assignment and scheduling,
Communication protocols, Failure Management and
recoveries [1]. In this paper one such issue related to
Communication Protocols in RT-Linux is discussed.
The key RT-Linux design objective was to add hard real-
time capabilities to a commodity operating system to
facilitate the development of complex control programs
with both capabilities. For example, one might want to
develop a real-time motor controller that used a
commodity database and exported a web operator
interface. Instead of attempting to build a single operating
system that could support real-time and non-real-time
capabilities, RT-Linux was designed to share a computing
device between a real-time and non-real-time operating
system so that (1) the real-time operating system could
never be blocked from execution by the non-real-time
operating system and (2) components running in the two
different environments could easily share data. As the
name implies RTLinux was originally designed to use
Linux as the non-real-time system but it eventually
evolved so that the RTCore real-time kernel could run
with either Linux or BSD UNIX.
Thus RT-Linux has become an interesting Software
component which could be used for Real Time
Computing in a Real Time System. But Real time
Computing has many more challenges to meet like higher
predictability, higher reliability, Should handle the widely
varying computational loads[1].
Some of the challenges could be better handled by Real
Time Operating System. They could be categorized as
Task assignment and scheduling, Communication
protocols, Failure Management and recoveries[1]. In this
paper one such issue related to Communication Protocols
in RT-Linux is discussed.

II. RT-LINUX ARCHITECTURE
RT-Linux provides the capability of running special real-
time tasks and interrupt handlers on the same machine as
standard Linux. These tasks and handlers are executed
when they are needed to be executed no matter what
Linux is executing. The worst case time between the

moment a hardware interrupt is know by the processor
and the moment an interrupt handler starts to execute its
first instruction is under 15 microseconds on RT-Linux
running on a generic x86. These times are hardware
limited, and as hardware improves RT-Linux will also
improve. Standard Linux has very good average
performance and can even provide millisecond level
scheduling precision for tasks using the POSIX soft real-
time capabilities. However, Standard Linux is not
designed to provide precision in the range of sub-
millisecond and reliable timing guarantees. RT-Linux was
based on a lightweight virtual machine where the Linux
runs as guest Operating System and it was given a
virtualized interrupt controller and virtualized timer, and
all other hardware access was direct. For the real-time
"host", the Linux kernel is a thread. Interrupts needed for
deterministic processing are taken care by the real-time
core, while other interrupts are sent to Linux kernel,
which runs at a lower priority when compared to real-time
threads. Linux kernel device drivers handle almost all
operations related to I/O. First-In-First-Out pipes (FIFOs)
or shared memory can be used to share data between the
General purpose Linux operating system and real-time
core RT-Linux.
RT-Linux built a virtual software layer. When Linux
disables or enables interrupts, one variable of the virtual
software layer is set. When one interrupt happens, RT-
Linux decides if the interrupt should be handled by Linux
or RT-Linux according to the value of the variable. In
respect of memory allocation of the real-time task, RT-
Linux allocates the memory for all real-time tasks as
Linux kernel modules, so that all real-time tasks have
same address space as the Linux kernel. It can lessen the
difficulty of RT-Linux development to do like this. But
Real Time task programmer has to design carefully real-
time programs in case of any crash in Real Time task the
whole system would be affected. In respect of task
scheduling, the scheduler of RT-Linux bases on the
priority scheduling. But the priority scheduling is not
suitable for all real-time application, So RT-Linux has
modularized the scheduler, therefore the user can use the
schedulers based on various policies and algorithms. In
respect of real-time clock, in order to realize the precise
real-time trimming and avoid the task release jitter, RT-
Linux adopts internal hardware timer chips as timer
interrupt generator. In respect of inter process
communication, RT-Linux provides the mechanism of
semaphore message queue and especially for the needs of
communication between real-time processes and none
real-time processes. RT-Linux provides FIFO, and shared
memory for inter task communication.

International Journal of Advanced Engineering Research and Science (IJAERS) Vol-3, Issue-6, June- 2016
ISSN: 2349-6495

www.ijaers.com Page | 146

Fig.1: Architecture of RT-Linux

RT Linux kernel is module based kernel, the scheduler is
itself a loadable kernel module. So, various scheduling
policies like Earliest Deadline First(EDF), RateMonotic
(RM) could be used. In RT-Linux the Linux runs as low
priority process. Advantages of RT-Linux are small foot
size (approx. 150 KB), higher degree of predictability,
response in terms milli-second and sophisticated service
from GPOS Linux.

III. PRIORITY INVERSION PHENOMENON

Priority inversion is phenomenon that occurs when a
higher priority task waits for a lower priority task to
release a resource it needs but that is held by lower
priority task and meanwhile the intermediate priority
tasks pre-empt the lower priority task from CPU. So, high
priority task would be blocked. Now the priority of the
task effectively gets inversed with respect to the medium
priority task. Priority Inversion will occur in Multi-
tasking system when resource is shared across the tasks.
Priority inversion would happen when high priority task
T(1) and low priority task(T3) share critical resource and
T3 first gets the resource, while T1 is ready and ask for
access the critical resource, it is blocked for waiting T3 to
release the resource, at this time, middle priority task T2
which does not need the resource is ready, T2 seizes the
processor to made T1 continue block until T2 ends, and
then T3 gets the processor again to complete the use of
shared resource, finally T1 pre-empts T3 and running.
In above scenario , the priority of T1 comes down to level
of T3’s priority, So the high priority task T1 cannot meet
its deadline first, if many middle priority has emerged,
high priority task would be blocked for undetermined
duration which is called as Continuous Priority Inversion
Phenomenon. Serious continuous priority inversion
phenomenon will end up with collapse of the whole real-
time system. One of the most famous victims of Priority
Inversion problem is the “mars path finder”. Although
priority inversion phenomenon was found early in 1970
of the last century, there is no effective and simple
solution yet. In some other scenario, there would be
another task (T4) which would tries to acquire the
common resource which may lead to cyclic change of

priority which leads to un-bounded priority inversion
problem.

Fig.2: Priority Inversion Phenomenon.

Priority inversion phenomenon is an important reason of
unpredictable errors in real-time system. Serious
continuous priority inversion phenomenon will lead to
real-time system to collapse. The priority inversion is a
most common problem that will affect the real-time
performance of a real – time kernel. Priority inversion
affects heavily on the system predictability. So the real-
time system may enter into unpredictable mode.

IV. EXISTING SOLUTION
There are many methods to solve the priority inversion
problem and each method has its own advantages as well
as disadvantage. A Solution will suite only for the
specific application environment.
4.1. Locking the Scheduler
Locking the scheduler will suspend the scheduler.
Whenever a task enters into any of the critical section, the
scheduler will be locked. Once the task comes out the
critical region the scheduler would be released. This
method stops temporarily the scheduler till the task is in
the critical section.
If task (T1) wants to access critical section, It will lock
the scheduler, enters the critical section. Now even a high
priority task (T2) is ready in run queue, Task(T1) could
not be pre-empted due to fact the scheduler is locked.
Once the task(T1) has finished its update on critical
section. It will release the scheduler. Now, the scheduler
will schedule the high priority task (T2).

Fig.3: Solution to priority inversion – Locking scheduler.

International Journal of Advanced Engineering Research and Science (IJAERS) Vol-3, Issue-6, June- 2016
ISSN: 2349-6495

www.ijaers.com Page | 147

This approach is simple and easy to implement by
programmer. System behaviour Analysis could be done
easily. Consider, there are three task in the system namely
task(TH) with highest priority, task(TM) with medium
priority and task(TL) with lower priority. A resource
(RA) is shared between task(TM) and task(TL). Task TL
is ready and running enters the critical section. Now the
scheduler is locked and the high priority task(TH) is
entering into run queue. But, since the scheduler is in
locked state, It could not have CPU. So, the task(TH) is
blocked due to a resource that is nowhere related to TH.
So, this approach will result in high degree un-
predictability in the system if the number of task is more.
Higher priority task may often miss the deadline. If the
critical section access time is high which in turn increase
the time for which scheduler is in locked state. So, this
method is not suitable for system with more number of
task or system with larger critical section.
4.2. Priority Remapping
This priority remapping method improves the priority
inheritance protocol. The method is expanding the
priority from 64 to 128 without changing the external
interface. For users, there are still only 64 priorities. But
in internal task creation function, priority is multiplied by
2 to achieve the priority remapping effect, so internal
priority is extended to (0, 2 ..., 126) even priority, the rest
odd priority are left for changing when priority inversion
phenomenon arises. For example, priority of task that
accesses critical resource is 80 while priority of task that
asks for the resource is 30, then priority of the task which
accesses the critical resource will promote to 31 to
prevent priority inversion phenomenon
4.3. Priority Exchange
Priority exchange method is also deriving from the
improvement of priority inheritance protocol. The basic
idea is that exchange tasks’ priorities when high priority
task is blocked and priorities will be changed back after
critical region is finished. This method makes sure every
task has unique priority in the system and solves the
priority inversion problem. The drawback is that
priority’s exchange requires additional costs.
4.4. Priority Inheritance
The idea of the priority inheritance protocol is, When a
high priority task is blocked by a low priority task for
getting the resource, then the low priority task will inhert
temporarily the priority of the higher priority task. When
the resource is released then low priority task’s priority
will be assigned the same value as earlier.
If task (TH) is blocked by low priority task Tl, TL will
inherit TH’s priority to avoid middle priority task TM
seizing the processor. After TL withdraw its critical
region, its priority resume to the original low priority. If
there are many high priority task being blowe, low

priority task would inherit the highest prioirty among all
priority tasks. Prioirty inheritance mehod makes
developers do not need to know anything about the task’s
requirements of resurces which reduce the burden of the
programmers. This improves the easier predictiability and
development of huge real-time embedded system. But this
method can’t prevent deadlock.

Fig.4: Solution to priority inversion – Priority inheritance

V. PROPOSED SOLUTION
The Proposed solution is another algorithm that is new to
RT-Linux. But this algorithm has wide usage in some
commercial Real Time Operating Systems. Proposed
solution contains more than one algorithm which discuss
advantage and disadvantage in each use case level.
5.1. Highest Locker Protocol
The basic idea of priority ceiling protocol shows in Figure
5. Programmer sets a ceiling priority for each shared
resource, Highest priority value of the task which is going
to use this resource. The ceiling is the highest task
priority for requests the resource. High priority task T1
and low priority task T3 need the same resource (the
black part in Figure 4). T3 gets ready first and access the
resource. At t1 time point, T1 gets ready and tries to
access the resource which has already held by T3. So T3’s
priority promotes to the ceiling at t2 time point. After T3
finishes the use of resource at t3 time point, T3’s priority
resume to the original low priority; T1 gets the resource
and begin to run. After T1 ends, T2 begins to run at t4
time point. After T2 ends, T3 continues to run at t5 time
point. This method extends priority inheritance protocol.
Priority ceiling protocol prevents deadlock and reduces
the block time. The drawback is that developers need to
do static analysis in advance and assign a highest priority
for each shared resource. This make the programs become
more complicated and developers must know all tasks’
priorities and all idle resources’ priorities. And each
resource size a ceiling priority also decreases the number
of task created by application system. So priority ceiling
protocol is not suitable for complex applications.

International Journal of Advanced Engineering Research and Science (IJAERS) Vol-3, Issue-6, June- 2016
ISSN: 2349-6495

www.ijaers.com Page | 148

Fig.5: Solution to priority inversion – Highest Locker

Protocol.
5.2. Prioirity Ceiling Protocol
Priority Ceiling Protocol (PCP) extends the ideas of PIP
and HLP to solve the problems of unbounded priority
inversion, chain blocking, and deadlocks, while at the
same time minimizing inheritance-related inversions.
Resource sharing among tasks under PCP is regulated
using two rules for handling resource requests: resource
grant and resource release. We elaborate these two rules
in the following:
Resource grant rule:
Resource grant rule consists of two clauses. These two
clauses are applied when a task requests to lock a
resource.
5.2.1. Resource request clause:
(a) If a task Ti is holding a resource whose ceiling
priority equals CSC, then the task is granted access to the
resource.
(b) Otherwise, Ti will not be granted CRS, unless its
priority is greater than CSC (i.e. pri(Ti) > CSC). In both
(a) and (b) above, if Ti is granted access to the resource
CRS, and if CSC < C eil(C Ri), then CSC is set to C eil(C
2. Inheritance clause: When a task is prevented from
locking a resource by failing to meet the resource grant
clause, it blocks and the task holding the resource inherits
the priority of the blocked task if the priority of the task
holding the resource is less than that of the blocked task.
5.2.2 Resource Release Rule:
If a task releases a critical resource it was holding and if
the ceiling priority of this resource equals CSC, then CSC
is made equal to the maximum of the ceiling value of all
other resources in use; else CSC remains unchanged. The
task releasing the resource either gets back its original
priority or the highest priority of all tasks waiting for any
resources which it might still be holding, whichever is
higher.
PCP is very similar to HLP except that in PCP a task
when granted a resource does not immediately acquire the
ceiling priority of the resource. In fact, under PCP the

priority of a task does not change upon acquiring a
resource merely the value of a system variable CSC
changes. The priority of a task changes by the inheritance
clause of PCP only when one or more tasks wait for a
resource it is holding. Tasks requesting a resource block
almost under identical situations under PCP and HLP.
The only difference with PCP is that a task Ti can also be
blocked from entering a critical section, if there exists any
resource currently held by some other task whose priority
ceiling is greater or equal to that of T2. A little thought
would show that this arrangement prevents the
unnecessary inheritance blockings caused due to the
priority of a task acquiring a resource being raised to very
high values (ceiling priority) at the instant it acquires a
resource. In PCP, instead of actually raising the priority
of the task acquiring a resource, merely the value of a
system variable (CSC) is raised to the ceiling value. By
comparing the value of CSC against the priority of a task
requesting a resource, the possibility of deadlocks is
avoided. If no comparison with CSC would have been
made (as in PIP), a higher priority task may later lock
some resource required by this task leading to a potential
deadlock situation where each task holds a part of the
resources required by the other task.

VI. IMPLEMENTATION DETAILS
By analyzing the RT-Linux source code, priority reverse
problem may not happen due to the priority inheritance
protocol that is enabled in the RT linux kernel patch. But
the Priority Inheritance Protocol is not much suitable for
the Real Time Application. As it only avoids the Un
Bounded Priority inversion problem. The problem arises
from the fact that Priority Inheritance Protocol has its own
limitation like chain blocking, deadlocks. Moreover chain
blocking will result in un-predictable behavior in the
system and many task may miss their respective deadline.
But Priority Inheritance is used due to its simplicity. To
solve this problem of priority reverse or priority inverse
problem alogn with chain blocking problem and deadlock
problem, priority ceiling or variant of priority ceiling
protocols have been adopted. The algorithm and
implementation details are discussed below.

• A global variable ‘System_Ceiling_Priority’ is
declared and initialized to zero.

• If a task Ti is holding a resource whose ceiling
priority equals to the value in
System_Ceiling_Priority, then the task is granted
access to the resource.

• (b) Otherwise, Ti will not be granted the resource,
unless its priority is greater than
System_Ceiling_Priority (i.e. pri(Ti) >
System_Ceiling_Priority). In both (a) and (b) above,
if Ti is granted access to the resource , and if

International Journal of Advanced Engineering Research and Science (IJAERS) Vol-3, Issue-6, June- 2016
ISSN: 2349-6495

www.ijaers.com Page | 149

System_Ceiling_Priority < C eil(C Ri), then
System_Ceiling_Priority is set to Ceil(Resource)

• Inheritance clause: When a task is prevented from
locking a resource by failing to meet the resource
grant clause, it blocks and the task holding the
resource inherits the priority of the blocked task if
the priority of the task holding the resource is less
than that of the blocked task.

VII. EXPERIMENTAL RESULTS AND

DISCUSSION
Create task T1, T2, T3, T4, T5, T6 with priority value
higher for lower task number. And T2, T5 shares the
resource R1 and R2. T1 to T2 is grouped as high priority
task. T3, T4 is grouped as medium priority task. T5, T6
are grouped as low priority task.
Figure 6 shows the running result that didn’t modify the
kernel, T2 seizes the processor make T1 blocked long
time and give raise to priority inversion phenomenon.

Fig.6: Priority Inversion Problem.

After use modified priority ceiling method, priority
inversion phenomenon is confined to one level, and there
is not chain blocking and deadlock possibility. The
experiment running result is shown in Figure 7.

Fig7: Modified Priority Ceiling Protocol.

VIII. CONCLUSION

This paper discuss several methods to solve the priority
inversion problem in RT-Linux such as disabling
interrupt, priority inheritance protocol, priority remapping
method, priority exchange and modified priority ceiling
protocol. The simplest method is that to lock the
scheduler preventing the system to context switch. It is
very simple and effective to limit priority inversion
problem when critical region is very short. But if the

critical region is relatively long, higher priority tasks
would miss their deadline often. Priority exchange
method is relative complex in design, need to modify RT-
Linux kernel, but it is convenient to develop complex
real-time application for application programmer. The
drawback is that lack of deadlock prevention, chain
blocking and the exchange of priority will pay some
unnecessary overhead to Real Time System. In cases of
exchange priority frequently, the method will increase
burden of the system and effect the predictability of
system. Priority Inheritance protocol introduce
inheritance related inversion which is not suitable for
some Real Time System requirements due to lack of dead
lock prevention, chain blocking, Inherited Inversion
problem. Modified Priority Ceiling Protocol takes the
advantages of priority ceiling protocol (Higher Locker
protocol) and the priority Inheritance protocol. By this
method, system is free from unbounded priority
inversion, Chain Lock, Dead Lock. And, this minimizes
the effect of Inheritance related inversion. The discussed
method improves effectively the removal of priority
inversion problem with relatively less overhead. The
Inheritance related inversion could be further reduced.
But this algorithm only minimize the impact but not
removing the same. By having this algorithm, RT-Linux
could be used in many time critical complex systems.

REFERENCES
[1] Ianlin Zhu, Keou Liu, Yu Tu, Yi Yuan, Xialoliang

Gao, “RT-Linux priority reversal and priority
inheritance mechanisms”, 2013 Fifth Conference on
Measuring Technology and Mechatrnics
Automation.

[2] XU Liang, XU Zhongwei. “Task scheduling
optimization in in μC/OSII system”[J] computer
project. 2007,33(19):57-59

[3] C.M. Krishna, Kag G. Shin “Real-time Systems”
Tenth reprint 2013.

[4] Lee J H, Kim H N. “Implementing Priority
Inheritance Semaphore on uC/OS Real-time
Kernel[C]” Proc.of IEEE Workshop on Software
Technologies for Future Embedded Systems.2003-
05.

[5] WANG Jigang, GU Guochang, XIE Shibo, LI Yi.
“Priority inheritance Protocol and an improved
algorithm” Computer engineering,2007,33(8):41-44.

[6] ZHAO Qi, SUO Xiaoran. “Research of priority
inversion in real-time system”[J] Computer
Application Research .2008,25(6):1728-1730

[7] ZHOU Xuchuan. “A method to solve priority
inversion problem in μC/OS-II system”[J]
Application of embedded operating system
2007,23(5-2) :58-64.

